Electric Vehicle Battery Re-use in Stationary Applications

Fintan McLoughlin

Dublin Energy Lab
Overview

Electric Vehicles
Vehicle types

Battery Technologies
Chemistry type

Stationary Applications
Building Integrated Photovoltaics (BIPV)
Vehicle Types

Conventional (ICE)
No electrification

Start-stop
ICE shuts down under braking and rest

Class I

Class II

Micro/mild hybrid
Start-stop combined with regenerative braking used to boost vehicles acceleration
Vehicle Types

Class II
Full-hybrid (HEV)
Start-stop combined with regenerative braking
used for electric driving

Class III
Plug-in hybrid (PHEV)
Charged off the grid and used for Electric
driving (20-50km)

Battery Electric Vehicles (BEV)
Battery is the vehicles only energy source
Electric Vehicles (Batteries)

Class I
Traditional and advanced lead based batteries

Class II
Nickel-Metal Hydride (NiMH) and Lithium Ion (Li-Ion)

Class III
Li-Ion or Sodium Nickel Chloride (NaNiCl2) for heavy duty vehicles
Electric Vehicles (Batteries)

<table>
<thead>
<tr>
<th>EV Type</th>
<th>Battery Capacities</th>
<th>Battery Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV</td>
<td>1 – 5 kWh</td>
<td>NiMH</td>
</tr>
<tr>
<td>PHEV</td>
<td>5 – 15 kWh</td>
<td>NiMH/Li-Ion</td>
</tr>
<tr>
<td>BEV (EREV)</td>
<td>greater 15kWh</td>
<td>Li-Ion</td>
</tr>
</tbody>
</table>
Projected worldwide market penetration for battery technology by vehicle type

EV Type

* 405,000 BEV and PHEV on the road globally in early 2014

Source: IEA
Battery (characteristics)

Energy Density
Specific energy (Wh/kg) and Specific power (W/kg)

Cost
€/kWh and €/kW

Lifetime
Chemistry type
Battery specific energy & power

Battery (characteristics)

Energy Density
Specific energy (Wh/kg) and Specific power (W/kg)

Cost
€/kWh and €/kW

Lifetime
Chemistry type
Battery cost

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€/kWh</td>
</tr>
<tr>
<td>Lead based</td>
<td>100 - 250</td>
</tr>
<tr>
<td>NiMH</td>
<td>400 - 500</td>
</tr>
<tr>
<td>Li-Ion</td>
<td>300 - 450</td>
</tr>
</tbody>
</table>

Battery (characteristics)

Energy Density
Specific energy (Wh/kg) and Specific power (W/kg)

Cost
€/kWh and €/kW

Lifetime
Chemistry type
Battery lifetime

<table>
<thead>
<tr>
<th>Type</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead based</td>
<td>3 – 8 years</td>
</tr>
<tr>
<td>NiMH</td>
<td>8 – 10 years</td>
</tr>
<tr>
<td>Li-Ion</td>
<td>10 years*</td>
</tr>
</tbody>
</table>

* Can be significantly less if operated under high DoD > 80%

Other important battery characteristics

Self-discharge
Dependent on temperature and SOC

Temperature range
During charging & discharging

Recharge power (C-rate)
Vehicle types
Self discharge

<table>
<thead>
<tr>
<th></th>
<th>Discharge rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead based</td>
<td>~ 3%</td>
</tr>
<tr>
<td>NiMH</td>
<td>~ 15% - 20%</td>
</tr>
<tr>
<td>Li-Ion</td>
<td>~ 5%</td>
</tr>
</tbody>
</table>

Other important battery characteristics

Self-discharge
Dependent on temperature and SOC

Temperature range
Affects charging & discharging

Recharge power (C-rate)
Vehicle types
Temperature range

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead based</td>
<td>-30 to +75°C</td>
</tr>
<tr>
<td>NiMH</td>
<td>-10 to +45°C</td>
</tr>
<tr>
<td>Li-Ion</td>
<td>-25 to +55°C</td>
</tr>
</tbody>
</table>

Other important battery characteristics

Self-discharge
Dependent on temperature and SOC

Temperature range
Affects charging & discharging

Recharge power (C-rate)
Vehicle types
Re-charge power (C-Rate)

<table>
<thead>
<tr>
<th></th>
<th>kW/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead based</td>
<td>0.35</td>
</tr>
<tr>
<td>NiMH</td>
<td>1^{ab}</td>
</tr>
<tr>
<td>Li-Ion</td>
<td>$0.5 - 2C^a$</td>
</tr>
</tbody>
</table>

a Charge must be managed by an active cooling system

b Charge must be managed by an adequate electronic and electric control system

So why recycle batteries from electric vehicles??

Specific Energy
EV can no longer sustain minimum travel distance

Specific Power
A minimum acceleration velocity is no longer attainable

These points are generally accepted to occur when storage capacity has reduced by 20% or when available peak power has decreased by 25% of its maximum

However between 70 – 80% of original battery capacity still remains and can be considered for re-use in other applications
Stationary application

Building integrated Photovoltaic's (BIPV)
Growing market of BIPV installations

Operational control strategies
High penetrations of PV & excess capacity is causing network stability problems on grid such as voltage and frequency disturbances

Battery storage
A need to balance supply and demand at a local level
Global grid connected PV installed capacity projections

Global grid connected PV by sector

BIPV operation

General configuration of a grid connected PV system with battery storage

BIPV operation

Legend
- Battery Charge
- Self Consumption
- Battery Discharge
- Import Grid

Electricity Power (kW)

Time of Day

00:30 06:00 12:00 18:00 00:00
EV charging profile

Source: Electric Vehicle Behaviors: Adoption and Charge Times
http://wiki-energy.org/
EV discharging profile (speed proxy)

how will battery perform subjected to building load profiles???

Building profiles

Building load profiles are very different to EV profiles

BIPV control strategies

Control strategies may be necessary to limit battery cycle use
Conclusions

EV and battery availability
Currently it is estimated that there are 405,000 PHEV & BEV’s on the road and projected 20 million by 2020.

PV penetration
BIPV market penetration is growing worldwide and a means of storing excess electricity capacity will be required to avoid overloading network grid infrastructure.

EV battery re-use
Reusing EV batteries for BIPV can provide a “cheap” method of providing storage as between 70-80% of capacity still remains after being retired from the automotive industry.
Questions?

Email:

fintan.mcloughlin@dit.ie